臺北市立松山高級中學 111 學年度第2 學期 高一數學科 第一次段考 題目卷

班級: 姓名: 座號:

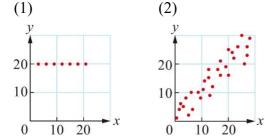
- 範圍:高中數學第二冊(三民版)第2.3章—數列與級數、數據分析
- 試卷:題目卷3張單面;答案卡1張;答案卷1張,答案卷請使用藍色或黑色原子筆作答。
- 小心作答,先把握會寫的題目喔!仔細檢查~祝考試順利!

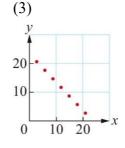


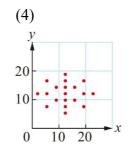
(

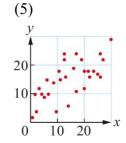
單選題(每題4分,共12分。)

)1. 下列有關兩變量 X和 Y的資料散布圖中,何者的相關係數最大?









) 2. <u>毛毛</u>某次段考的成績與全班的成績平均、標準差如下。試問以全班的分數來看,<u>毛毛</u>哪一科的表現最好?

	國文	英文	數學	化學
毛毛的成績	70	86	72	76
班平均	58	88	64	73
標準差	15	4	12	10

- (1) 國文 (2) 英文 (3) 數學 (4) 化學 (5) 無法比較
-) 3. 某公司統計 109 年、110 年的業績成長率分別為 28%、25%, 若公司老闆希望 109 年到 111 年這三年的年平均成 長率可以達到 40%(含)以上,請問此公司 111 年的業績成長率應該至少多少才可達成目標? (取至整數位)

(1) 67% (2) 68% (3) 70% (4) 71% (5) 72%

多重選擇題(每題8分,共32分)

(錯一個選項得 5 分,錯兩個選項得 2 分,錯多於兩個選項或該題未作答得零分。)

-) 4. 試問下列何者正確? (
 - (1) 若數列 a_n 是等差數列, $\langle 4a_n \rangle$ 也是等差數列。
 - (2) 若數列 a_n 是等差數列 $,\langle 3^{a_n}\rangle$ 是等比數列。
 - (3) 若數列 a_n 是等比數列,公比為r,則 $\langle 2a_n \rangle$ 是公比為2r 的等比數列。
 - (4) 若數列 a_n 是等差數列,且公差為d。若 $b_n = a_n + n$,則 $b_1, b_2, ..., b_n$ 是公差為d+1的等差數列。
 - (5) 若數列 a_n 的前 n 項和為 $S_n = 3n^2 2n + 1$,則此數列為等差數列。
-) 5. 以下有 A、B、C、D 四組數據資料,關於各個統計量,下列何者正確?

A:1,2,3,4,5,6,7,8 ,

B:1,4,9,16,25,36,49,64,

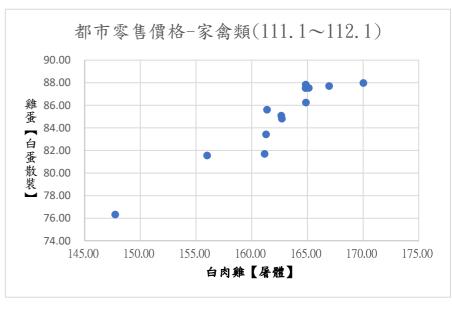
 $C:\sqrt{1},\sqrt{2},\sqrt{3},\sqrt{4},\sqrt{5},\sqrt{6},\sqrt{7},\sqrt{8}$, D:-2,-4,-6,-8,-10,-12,-14,-16

且 A、B、C、D 四組的算術平均數分別為 $\mu_A, \mu_B, \mu_C, \mu_D$,標準差分別為 $\sigma_A, \sigma_B, \sigma_C, \sigma_D$

- (1) 考慮 A、B 的算術平均數,則 $\mu_B = (\mu_A)^2$ 。
- (2) 考慮 A、C 的標準差,則 $\sigma_C = \sqrt{\sigma_A}$ 。
- (3) 考慮 A、D 的標準差,則 $\sigma_D = 2\sigma_A$ 。
- (4) 考慮 D 組的第 30 百分位數, $P_{30} = -6$ 。
- (5) 若將 A 組資料標準化為 F 組,則 F 組標準差為 1。

- () 6. 設有 40 筆資料(x_i,y_i),i=1,2,…,40。已知平均 $\mu_x=3$, $\mu_y=6$,且 x 與 y 的相關係數 r=0.8,若 y 對 x 的迴歸 直線通過點(2,-2)。試問下列哪些選項是正確的?
 - (1) 迴歸直線的斜率為 0.8。
 - (2) x的標準差小於 y 的標準差。
 - (3) y 對 x 的迴歸直線通過另一筆數據(4,16)。
 - (4) 若 $x_i' = -x_i + 3$, $y_i' = 2y_i + 1$,則x,y的相關程度高於x',y'的相關程度。
 - (5) 若 $x'_i = -x_i + 3$, $y'_i = 2y_i + 1$, 則y'對x'的迴歸直線斜率為-16。
- ()7. 自 2022 年起世界各國都陸續傳出缺蛋及蛋價上漲的消息,且持續影響至今。中華民國蛋價委員會(2023.3.6)公布 雞蛋批發價格每台斤將調漲 3 元,再創下疫情以來新高。據農委會新聞稿指出,禽流感、飼料成本提升及氣候變 遷影響,成為台灣這一年來雞蛋價格持續上升的主因。因為台灣連續兩年出現缺蛋潮,<u>明翰</u>讀完近期的新聞後好 奇平常吃的雞肉和這則消息有沒有關係,「白肉雞(X)」與「散裝雞蛋(Y)」一年內的都市零售價格(如表一); 並繪製散布圖(如圖一),橫軸為白肉雞價格、縱軸為雞蛋價格。已知這兩組資料的相關係數為 0.94,請問<u>明翰</u> 對資料的解讀何者正確?(參考資料:畜產品價格查詢系統)

現行品項平均價格查詢(單位:元/公斤)				
	都市零售價格			
日期	家禽類			
H 34	白肉雞【屠體】	雞蛋【白蛋散裝】		
	(x)	(y)		
111年01月	147. 75	76. 32		
111年02月	156. 01	81. 55		
111年03月	161.17	81. 70		
111 年 04 月	161. 29	83. 42		
111 年 05 月	161.38	85. 61		
111 年 06 月	162. 72	84. 81		
111年07月	162. 66	85. 08		
111年08月	164. 87	86. 24		
111年09月	164. 84	87. 52		
111年10月	164. 86	87. 83		
111年11月	165. 14	87. 54		
111年12月	166. 96	87. 70		
112年01月	170. 03	87. 97		



【圖一】

【表一】

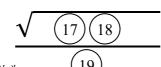
- (1) 由白肉雞的每月平均價格可得知這 13 個月的最高價格為每公斤 170.03 元。
- (2) 這13個數據中,雞蛋價格的標準差大於10元/公斤。
- (3) 這13個數據中,白肉雞的價格與雞蛋的價格呈現正相關。
- (4) 若將白肉雞的價格改為以台斤計價(1台斤=0.6公斤),雞蛋維持公斤計價,則兩者價格的相關係數會改變。
- (5) 若將這兩組資料 (x_i, y_i) , i = 1, 2, ..., 13標準化後,其y對x的迴歸直線方程式斜率為0.94。

三、 選填題(每小格6分,共48分)

A. 設相異三數成等差數列,其和為 30。若將此三數依序減掉 $1 \times 4 \times 6$ 後會成為等比數列,則此三數中<u>最大的數</u>和<u>最小的數</u>乘積為 8×9

B. 求級數 $2 \times 1^2 + 5 \times 2^2 + 8 \times 3^2 + ... + 26 \times 9^2$ 之和為 (10)(11)(12)(13)

C. 若有一公差為正數的等差數列共 11 項,首項為 19,且這 11 個數的標準差為 $10\sqrt{10}$,則此數列的末項為 $\frac{1}{2}$



D. 兩變量x與y的數據如下表, \bar{x} x與y的相關係數為

х	1	2	4	5
y	2	3	2	5

E. 已知兩變數 X、Y 的數據如下:

х	6	4	5	3	7
у	1	5	а	b	2

若 Y 對 X 的迴歸直線為 $y = -\frac{4}{5}x + 7$,試求 $a \times b = 20$ 21

F. 用大小一樣的鋼珠可以排成正三角形、正方形與正五邊形陣列,其排列的規律如圖二所示:

	正三角形陣列	正方形陣列	正五邊形陣列
每邊1個鋼珠	•	•	•
每邊2個鋼珠	Δ		\bigcirc
每邊 3 個鋼珠	\triangle		$\widehat{\Diamond}$
每邊 4 個鋼珠			

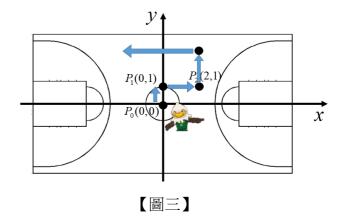
【圖二】

(1) 觀察正五邊形陣列,假設 a_n 為正五邊形陣列中每邊有n個鋼珠的圖形之總鋼珠數,且數列 $\langle a_n \rangle$ 的遞迴關係式是

$$\begin{cases} a_1 = 1 \\ a_n = a_{n-1} + An + B, n \ge 2 \end{cases}$$
,試求 $A - B$ 之值為

- G. 松山高中 HBL 的吉祥物小 E 在籃球比賽的中場時間都會到球場中央和觀眾互動。假設球場正中間為原點,今小 E 從球場正中間出發,每次移動的距離都是前一次的 2 倍,且他移動的方向依序為「向上、向右、向上、向左」四個為一週期重複循環。如圖三所示,第 1 次向上移動 1 單位到達 P_1 = (0,1),第 2 次向右移動 2 單位到達 P_2 = (2,1),第 3 次向上移動 4 單位到達 P_3 = (2,5),第 4 次向左移動 8 單位到達 P_4 = (-6,5),…。若第 n 次移動後剛好到達球場邊緣,此時 P_n = (x_n ,1365),則

 x_n 为 (25)(26)(27)



四、 非選題(1題,共8分)

1.設數列 $\langle a_n \rangle$ 的遞迴關係式為: $\begin{cases} a_1 = 1 \\ a_n = \frac{3a_{n-1} - 1}{4a_{n-1} - 1}, (n \ge 2) \end{cases}$

(1)寫出 a_4 。(2分)

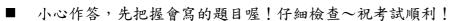
(2)猜測一般項 a_n 。試利用數學歸納法證明你的猜測。 $(6 \, \mathcal{G})$ 【請寫在答案卷上!!!】

臺北市立松山高級中學 111 學年度第 2 學期 高一數學科 第一次段考 答案卷

班級:_____ 座號:____ 姓名:_____

■ 範圍:高中數學第二冊(三民版)第2.3章—數列與級數、數據分析

■ 試卷:題目卷3張單面;答案卡1張;答案卷1張,答案卷請使用藍色或黑色原子筆作答。



■ 若班級座號畫卡錯誤,酌扣5分。

答案卡得分	非選題得分	總分

四、非選題(1題,共8分)

1.設數列 $\langle a_n \rangle$ 的遞迴關係式為: $\begin{cases} a_1 = 1 \\ a_n = \frac{3a_{n-1} - 1}{4a_{n-1} - 1}, (n \ge 2) \end{cases}$

(1)寫出 a_4 。(2分)

(2)猜測一般項 a_n 。試利用數學歸納法證明你的猜測。(6 分)

臺北市立松山高級中學 111 學年度第 2 學期 高一數學科 第一次段考 答案

班級: 座號: 姓名:

■ 範圍:高中數學第二冊(三民版)第2.3章—數列與級數、數據分析

■ 試卷:題目卷3張單面;答案卡1張;答案卷1張,答案卷請使用藍色或黑色原子筆作答。

■ 小心作答,先把握會寫的題目喔!仔細檢查~祝考試順利!

■ 若班級座號畫卡錯誤,酌扣5分。

一、 單選題 (每題 4 分, 共 12 分。)

1. (2)	2. (1)	3. (5)
--------	--------	--------

二、 多重選擇題 (每題 8 分, 共 32 分)

(錯一個選項得5分,錯兩個選項得2分,錯多於兩個選項或該題未作答得零分。)

三、 選填題(每小題6分,共48分)

A. 75	B. 5790	C. 119	D. $\frac{\sqrt{15}}{6}$
E. 12	F.(1) 5	F.(2) 10	G. 410

四、 非選題(1題,共8分)

1.設數列
$$\langle a_n \rangle$$
的遞迴關係式為:
$$\begin{cases} a_1 = 1 \\ a_n = \frac{3a_{n-1} - 1}{4a_{n-1} - 1}, (n \ge 2) \end{cases}$$

(1)寫出 a, 。(2分)

(2)猜測一般項 a_n 。試利用數學歸納法證明你的猜測。(6 分)

解:(1)由遞迴關係式可得
$$a_2 = \frac{2}{3}$$
, $a_3 = \frac{3}{5}$, $a_4 = \frac{4}{7}$ (2分)

(2)由(1)猜測
$$a_n = \frac{n}{2n-1}$$
 (1 分)

①當
$$n=1$$
時, $a_1 = \frac{1}{2 \times 1 - 1} = \frac{1}{1} = 1$,成立(1分)

②設
$$n = k$$
時成立,即 $a_k = \frac{k}{2k-1}(1 分)$

則當n=k+1時

$$a_{k+1} = \frac{3a_k - 1}{4a_k - 1} = \frac{3 \times \frac{k}{2k - 1} - 1}{4 \times \frac{k}{2k - 1} - 1} = \frac{3k - (2k - 1)}{4k - (2k - 1)} = \frac{k + 1}{2k + 1} = \frac{(k + 1)}{2(k + 1) - 1} (2 \ \%)$$

即 n=k+1 時亦成立

故由數學歸納法可知:對於所有的正整數n, $a_n = \frac{n}{2n-1}$ 恆成立(1分)