臺北市立松山高級中學 110 學年度第二學期高三數學甲期末考試卷

*本試題中 $i = \sqrt{-1}$

班級: 座號: 姓名:

- 一、單一選擇題(每題4分,共12分)
-)1.一個公正的骰子連擲 50 次,試問 1 點出現幾次的機率最大?
 - (1) 8 次 (2) 9 次 (3) 25 次 (4) 42 次 (5) 50 次
-)2.試判斷下列選項中,隨機變數 A~E 何者非二項分布? (
 - (1)阿松「丟一個 5 元硬幣」20 次, A 是其中人頭朝上的次數
 - (2)阿山「同時擲兩粒公正骰子」30次,觀察所出現的點數,B是兩粒骰子點 數和為7的次數
 - (3)小高「抽取一副 52 張的撲克牌」10 次,每次抽一張,觀察顏色後放回, C 是 其中黑色牌出現的次數
 - (4)「國際學生能力評量計畫 PISA」調查了各國 15 歲青少年是否認為學習數學有 價值,一位記者在臺灣街頭訪談 15 歲青少年,D 是出現第一位認為學習數學有 價值所需訪談的人數
 - (5)小中觀察班上 30 位同學某堂數學課情形(上課或滑手機), E 是其中滑手機的人數
-)3.設隨機變數 X 表示投擲一不公正骰子出現的點數, P(X=k) 表示隨機變數 X 取值 k(的機率。已知X的機率分布如下表 $(x \cdot y)$ 為未知常數 $(x \cdot y)$,又 $(x \cdot y)$ 的期望值 $(x \cdot y)$ 試問下列選項何者正確?

X = k	1	2	3	4	5	6
P(X = k)	X	y	y	X	y	у

(1) x + 2y = 1 (2) x < y (3) $E(X^2) = [E(X)]^2$

- (4) X 的變異數 $Var(X) = E(X \mu)$ (5) 投擲此骰子兩次,點數和為 3 的機率為 $\frac{1}{18}$
- 二、多重選擇題(每題6分,共18分,錯一個選項得4分,錯二個選項得2分,錯三個(含)以上得0分)
-)1.在複數平面上有兩點A與B,其所代表的複數分別為 Z_1 與 Z_2 ,O表原點,

 $\left. \dot{z}_{l}\right| =\sqrt{3}$, $Arg(z_{l})=70^{\circ}$, $\frac{z_{2}}{z_{l}}=1+\sqrt{3}i$,試問下列哪些選項是正確的?

(1)
$$|z_2| = 2\sqrt{3}$$
 (2) $Arg(-z_1) = Arg(\frac{1}{z_1})$ (3) $\triangle AOB$ 的 面 積 為 $\frac{3\sqrt{3}}{2}$

$$(4)|z_1 - z_2| = \sqrt{3} \qquad (5)|z_1 + z_2| = \sqrt{21}$$

-)2.設隨機變數X表示小松射擊命中靶面所需發數,已知小松打靶命中率為p,且每發 (射擊命中靶面與否的情況皆獨立。已知X的變異數Var(X)=12。試問下列哪些選 項是正確的?

 - (3)小松打靶命中率 $p = \frac{1}{12}$ (4) $P(X = 3) = (\frac{1}{4})^3 = \frac{1}{64}$ (5) $P(X \ge 3) = \frac{9}{16}$

)3.設 $\omega = \frac{-1 + \sqrt{3}i}{2}$,試問下列哪些選項是正確的?

$$(1)\omega^{3} = 1$$

$$(2)1 + \omega^2 + \omega^4 + \omega^6 + \omega^8 + \omega^{10} = 0$$

$$(3)(1+\omega)(1+\omega^2)(1+\omega^4)(1+\omega^8) = 9 (4)\frac{1}{1+\omega} + \frac{1}{1+\omega^2} = 1$$

$$(4)\frac{1}{1+\omega} + \frac{1}{1+\omega^2} = 1$$

(5)令 $\omega \times [2(\sin 10^{\circ} + i\cos 10^{\circ})]^2 = a + bi$,其中 $a \cdot b$ 為實數。在複數平面上, a+bi 對應的點 (a,b) 在第二象限

- 三、填充題(每格6分,共60分)
- 1.重複丟兩枚均勻的硬幣 400 次,令隨機變數 X 表示兩枚硬幣都出現反面的次數, 求X的期望值E(X) = (次)。
- 2. <u>小松</u>每場比賽得勝的機率為 $\frac{2}{3}$,失敗的機率為 $\frac{1}{3}$ 。設每場比賽皆有分出勝負且互相獨立, 本週小松參加四場比賽,若每勝一場,可得獎金1000元,敗一場則罰款500元, 這四場比賽下來,小松至少贏得2000元的機率為____。

3.已知<u>小傑</u>參加一場「全同學運動會」獲勝的機率是 1/10, 設每場比賽皆有分出勝負且 互相獨立,隨機變數 X 的取值表示<u>小傑</u>獲勝所需的場數, 試求<u>小傑</u>至少 3 場(含)失敗的機率為 _____。

4.滿足方程式 $z^4 + z^2 + 1 = 0$ 的根,在複數平面上對應的點,所決定的多邊形面積為_____。

$$5.\frac{(\sin 10^{\circ} + i\cos 10^{\circ})^{3}(\cos 9^{\circ} + i\sin 9^{\circ})^{10}}{(\cos 15^{\circ} - i\sin 15^{\circ})^{2}} = \underline{\qquad} \circ$$

6.保險公司推出一年期的住宅防火險:「在一年內房屋發生火災可獲理賠 100 萬元, 保費為 2500 元」。根據資料顯示,住宅房屋發生火災的機率為 0.0015,試問每張保單中, 保險公司獲利的期望值為_____元。

7.小松手持一枚硬幣,宣稱其正面出現的機率為 0.6。為了驗証小松說的是否真實,小高設定檢定標準 $\alpha=0.05$,並連續投擲此枚硬幣 15 次,設隨機變數 X 表示正面出現的次數,且令拒絕域為 $X \leq n_1$ 或 $X \geq n_2$,試利用下表求出數對 $(n_1,n_2) = ______$ 。

X = k	0	1	2	3	4	5	6	7
$p(X \le k)$	0.0000	0.0000	0.0003	0.0019	0.0093	0.0338	0.0950	0.2131
$p(X \ge k)$	1.0000	1.0000	1.0000	0.9997	0.9981	0.9907	0.9662	0.9050

X = k	8	9	10	11	12	13	14	15
$p(X \le k)$	0.3902	0.5968	0.7827	0.9095	0.9729	0.9948	0.9995	1.0000
$p(X \ge k)$	0.7869	0.6098	0.4032	0.2173	0.0905	0.0271	0.0052	0.0005

9.設隨機變數 X 的取值表示投擲一顆骰子 2 次後,「點數 1」出現的總次數;

而隨機變數 Y代表 2 次投擲中出現「點數 1」的頻率,即 $Y = \frac{X}{2}$ 。

若此顆骰子為「非公正」的骰子,出現「點數1」的機率為 $\frac{1}{4}$ 。

試求隨機變數Y的變異數Var(Y) = 。

10.設有n把樣子相似的鑰匙,其中只有一把鑰匙能將寶箱打開,今一次抽取一把鑰匙去試開 寶箱上的鎖,直到成功打開寶箱為止。設每次抽取鑰匙是互相獨立的,且每把鑰匙被抽取 到的機率相等,每把鑰匙試開後「不放回」。設隨機變數X的取值表示打開寶箱所需次數,

若
$$X$$
的變異數 $Var(X) = V_n$,試求 $\lim_{n \to \infty} \frac{V_n}{n^2} = \underline{\hspace{1cm}}$ 。

四、混合題(共10分)

松山高中舉辦園遊會,某攤位舉辦促銷活動,凡消費88元即可抽獎一次,獎品為限量發行 的「燃燒你的松山魂」飲料提袋,該攤位宣稱「平均10次即可抽中一次」,試回答下列問題:) 1.(單選題) (2分)

> 假設中獎機率為0.1,隨機變數X的取值表示抽獎直到中獎所需的次數,試求恰好 在第3次中獎的機率為何?

 $(1) 0.1 (2) (0.1)^3 (3) (0.9)(0.1) (4) (0.9)^2(0.1) (5) (0.9)(0.1)^2$

3.

- (1)設顯著水準 α = 0.1,且令拒絕域為X > n,試求拒絕域為何?($\log 3 \approx 0.4771$)(4分)
- (2)試利用(1)說明,若小松連續抽了15次才中獎,

則此攤位所宣稱「平均10次即可抽中一次」的說法是否合理?(1分)

臺北市立松山高級中學 110 學年度第二學期高三數學甲期末考答案卷

使用	高三	班級	座號	姓名	得分	
班級	數甲	近級	坐號	姓石	付刀	

一、單一選擇題(每題4分,共12分)

1	2	3
1	4	5

二、多重選擇題(每題6分,共18分,錯一個選項得4分,錯二個選項得2分,錯三個(含)以上得0分)

1	2	3
135	125	124

三、填充題(每格6分,共60分)

1	2	3
100	16	0.729
	27	
4	5	6
$\sqrt{3}$	1	1000
7	8	9
(4,14)	$2(\cos\frac{2\pi}{9} + i\sin\frac{2\pi}{9})$ $2(\cos\frac{8\pi}{9} + i\sin\frac{8\pi}{9})$ $2(\cos\frac{14\pi}{9} + i\sin\frac{14\pi}{9})$	$\frac{3}{32}$
	$2(\cos\frac{8\pi}{9} + i\sin\frac{8\pi}{9})$	
	$2(\cos\frac{14\pi}{9} + i\sin\frac{14\pi}{9})$	
10		
1		
$\overline{12}$		

四.混合題(共 10 分)

<u>□.110 □ ∞()</u>	- /4 /	·
1.(單選題)	2.(3 分)	3. (5 分)
(2分)		
4	P(X > k)	(1)
	$= P(X = k + 1) + P(X = k + 2) + \dots$	$(0.9)^k < 0.1(1分)$
	$= (0.9)^{k}(0.1) + (0.9)^{k+1}(0.1) + \dots$	$\Rightarrow \log(0.9)^k = k \log \frac{9}{10} < \log \frac{1}{10}$
	$=\frac{(0.9)^k(0.1)}{1-0.9}=(0.9)^k$	10 10
	$-\frac{1}{1-0.9}$ $-\frac{(0.9)}{1-0.9}$	$\Rightarrow k > \frac{-1}{2\log 3 - 1} = \frac{-1}{-0.0458} = 21. \sim (2\%)$
		故拒絕域為 X > 22 (1分)
		(2) 合理 (不拒絕假設)(1分)
		(未用(1)說明不給分)